Thursday, September 27, 2018

Keio Plaza Hotel Tokyo

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50-9:50</td>
<td>Plenary 4</td>
<td>Mechanistic Insight to Alzheimer Disease
Chair: Takeshi Iwatsubo (Department of Neuropathology, Graduate School of Medicine, The University of Tokyo)

PL4 Heterogeneity and complexity in Alzheimer disease
Bradley T. Hyman (Massachusetts General Hospital, Harvard Medical School)</td>
</tr>
<tr>
<td>9:50-10:20</td>
<td>Plenary 5</td>
<td>Future of Neuropathology
Chair: Shigeo Murayama (Department of Neurology & Neuropathology, (the Brain Bank for Aging Research)/Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology)

PL5 Neuropathology training in Japan
Mari Yoshida (Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University)</td>
</tr>
<tr>
<td>10:20-12:20</td>
<td>Symposium 31</td>
<td>Challenges in Pediatric High Grade Neuroepithelial Tumors
Chairs: Cynthia Hawkins (The Hospital for Sick Children, Laboratory Medicine and Pathobiology, University of Toronto) Koichi Ichimura (Division of Brain Tumor Translational Research, National Cancer Center Research Institute) Akira Matsumura (Department of Neurosurgery, Faculty of Medicine, University of Tsukuba)

S31-1 Deciphering the histone code for pediatric gliomas
Cynthia Hawkins (The Hospital for Sick Children, Laboratory Medicine and Pathobiology, University of Toronto)

S31-2 Whole chromosomal aberration signatures predict survival in standard-risk non-WNT/non-SHH medulloblastoma: Molecular analysis of the HIT-SIOP-PNET4 clinical trial
Torsten Pietsch (Department of Neuropathology, University of Bonn / DGNN Brain Tumor Reference Center)

S31-3 Challenges in modeling of pediatric brain tumors
Charles G. Eberhart (Department of Pathology, Johns Hopkins University School of Medicine)

S31-4 Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors
Koichi Ichimura (Division of Brain Tumor Translational Research, National Cancer Center Research Institute)

S31-5 Foxr2 promotes formation of CNS-embryonal tumors in a Trp53-deficient background
Hideto Koso (Institute of Medical Science, The University of Tokyo)</td>
</tr>
</tbody>
</table>
Luncheon Seminar 9

12:30-13:30

Luncheon Seminar 9

Chair: Jun Yoshida (Saishukan Hospital / Nagoya University)

LS9 Therapeutic development for malignant brain tumors: past and future perspectives

Motoo Nagane (Department of Neurosurgery, Kyorin University Faculty of Medicine)

Closing Ceremony

13:40-13:50

Closing Ceremony

ICN2018 President: Hitoshi Takahashi (Niigata University)

Next President of the International Society of Neuropathology: Seth Love (School of Clinical Sciences, University of Bristol / Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School)

Post ICN Neuroscience Meeting

14:00-15:30

Post ICN Neuroscience Meeting

Chairs: Hideki Mochizuki (Department of Neurology, Osaka University Graduate School of Medicine)

Bradley T. Hyman (Neurology, Harvard Medical School

Alzheimer’s Unit, MassGeneral Institute for Neurodegenerative Disease

Massachusetts Alzheimer’s Disease Research Center)

Comprehensive proteome analysis reveals ultra-early phase pathologies of neurodegenerative diseases

Hitoshi Okazawa (Department of Neuropathology, Tokyo Medical and Dental University)

Neurological disease modeling and drug discovery using iPSC platform

Haruhisa Inoue (Center for iPS Cell Research and Application (CiRA), Kyoto University / Drug-Discovery Cellular Basis Development Team, RIKEN BioResource Center)

TDP-43 and DISC1 Co-Aggregation Disrupts Dendritic Local Translation and Mental Function in FTLD

Motomasa Tanaka (Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute)